Representations of Monoids Arising from Finite Groups of Lie Type

نویسنده

  • A. SALWA
چکیده

A class of finite monoids M constructed from a groupG of Lie type is considered. We describe the irreducible complex representations and prove the complete reducibility of the representations of M . The sandwich matrix of M is decomposed into a product of matrices corresponding to maximal parabolic subgroups of G.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

Complex Representations of Matrix Semigroups

Let M be a finite monoid of Lie type (these are the finite analogues of linear algebraic monoids) with group of units G . The multiplicative semigroup ^AfF), where F is a finite field, is a particular example. Using HarishChandra's theory of cuspidal representations of finite groups of Lie type, we show that every complex representation of M is completely reducible. Using this we characterize t...

متن کامل

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Finite Dimensional Algebras, Quantum Groups and Finite Groups of Lie Type

We shall discuss generic extension monoids associated with finite dimensional (basic) hereditary algebras of finite or cyclic type and related applications to Ringel–Hall algebras, (and hence, to quantum groups). We shall briefly review the geometric setting of quantum gln by Beilinson, Lusztig and MacPherson and its connections to Ringel– Hall algebras and q-Schur algebras. In the second part ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996